D.1.3 Implementation of the Standard

The measured Characteristic Curve is interpolated for the available output levels Doutput , in this case, yielding 1024 Luminance levels LI,m . The Grayscale Standard Display Function is also interpolated between JNDmin and JNDmax ( (JND = [ JNDmax - JNDmin ]/1023 = [453.85 - 32.54]/1023) yielding 1024 Standard Luminance levels LI,STD . Interpolations can be performed by a variety of techniques. Here, a cubic spline technique was employed.

For every LI ,STD , the closest L J,m is determined. The data pair I , J defines the transformation between D input and Do utput (Table D.1-2) by which the Luminance response of the Display System is made to approximate the Grayscale Standard Display Function.

Table D.1-2Look-Up Table for Calibrating Display System

Input Output Input Output Input Output Input Output
0 0 1 118 2 131 3 140
4 148 5 153 6 160 7 164
8 169 9 173 10 178 11 182
12 185 13 189 14 191 15 194
16 198 17 201 18 204 19 207
20 210 21 214 22 217 23 219
24 222 25 225 26 228 27 231
28 234 29 237 30 240 31 243
32 245 33 248 34 251 35 253
36 255 37 257 38 260 39 263
40 265 41 268 42 271 43 274
44 276 45 279 46 282 47 284
48 287 49 290 50 292 51 295
52 298 53 301 54 303 55 306
56 308 57 311 58 314 59 317
60 319 61 320 62 323 63 326
64 329 65 331 66 334 67 336
68 339 69 342 70 345 71 347
72 350 73 353 74 356 75 359
76 361 77 364 78 367 79 370
80 372 81 375 82 378 83 381
84 383 85 385 86 388 87 391
88 393 89 396 90 399 91 402
92 405 93 407 94 410 95 413
96 416 97 419 98 422 99 425
100 428 101 431 102 434 103 437
104 440 105 443 106 445 107 448
108 450 109 452 110 456 111 459
112 462 113 465 114 468 115 471
116 474 117 477 118 480 119 483
120 486 121 490 122 492 123 495
124 499 125 502 126 505 127 509
128 511 129 513 130 516 131 519
132 522 133 526 134 529 135 532
136 535 137 539 138 542 139 545
140 549 141 552 142 555 143 559
144 562 145 565 146 569 147 572
148 575 149 578 150 581 151 585
152 588 153 591 154 595 155 599
156 602 157 605 158 609 159 613
160 616 161 619 162 623 163 627
164 631 165 633 166 637 167 640
168 643 169 646 170 650 171 655
172 657 173 663 174 666 175 669
176 674 177 678 178 682 179 684
180 688 181 693 182 696 183 700
184 703 185 706 186 711 187 714
188 719 189 723 190 727 191 731
192 735 193 738 194 743 195 745
196 752 197 754 198 758 199 764
200 766 201 769 202 775 203 777
204 783 205 787 206 789 207 796
208 799 209 805 210 808 211 811
212 818 213 821 214 827 215 830
216 834 217 838 218 841 219 848
220 851 221 856 222 861 223 864
224 870 225 874 226 880 227 883
228 889 229 893 230 897 231 901
232 905 233 911 234 915 235 922
236 925 237 931 238 935 239 941
240 945 241 951 242 955 243 960
244 964 245 969 246 975 247 979
248 985 249 991 250 995 251 1002
252 1006 253 1012 254 1016 255 1023